In the expansion of ${\left( {3x - \frac{1}{{{x^2}}}} \right)^{10}}$ then $5^{th}$ term from the end is :-

  • A

    $\frac{{17010}}{{{x^6}}}$

  • B

    $\frac{{17010}}{{{x^9}}}$

  • C

    $\frac{{17010}}{{{x^8}}}$

  • D

    $\frac{{17010}}{{{x^{-1}}}}$

Similar Questions

If the fourth term in the expansion of $\left(x+x^{\log _{2} x}\right)^{7}$ is $4480,$ then the value of $x$ where $x \in N$ is equal to

  • [JEE MAIN 2021]

The coefficient of ${x^5}$ in the expansion of ${({x^2} - x - 2)^5}$ is

For $\mathrm{r}=0,1, \ldots, 10$, let $\mathrm{A}_{\mathrm{r}}, \mathrm{B}_{\mathrm{r}}$ and $\mathrm{C}_{\mathrm{r}}$ denote, respectively, the coefficient of $\mathrm{x}^{\mathrm{r}}$ in the expansions of $(1+\mathrm{x})^{10}$, $(1+\mathrm{x})^{20}$ and $(1+\mathrm{x})^{30}$. Then $\sum_{r=1}^{10} A_r\left(B_{10} B_r-C_{10} A_r\right)$ is equal to

  • [IIT 2010]

The coefficient of ${x^{32}}$ in the expansion of ${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ is

If coefficients of $2^{nd}$, $3^{rd}$ and $4^{th}$ terms in the binomial expansion of ${(1 + x)^n}$ are in $A.P.$, then ${n^2} - 9n$ is equal to